
SALTS OF *spiro*-DERIVATIVES OF BENZO[*f*]QUINOLINE AND SEVERAL NATURAL CARBOXYLIC ACIDS

E. A. Dikusar,^{1,2} A. P. Kadutskii,¹ N. G. Kozlov,¹ A. P. Yuvchenko,² and L. A. Mel'nichuk³

Derivatives of benzo[f]quinoline(4',4'-dimethyl-*spiro*-1,2,3,4-tetrahydrobenzo[f]quinolin-[2;1']-cyclohexan-2',6'-dione)**1a**and**b**were prepared by a three-component cascade heterocyclization of 2-naphthylamine, formaldehyde, and dimedone [1]and contained structural features of the alkaloid nitramine (**2**) [2, 3], which is found in the aerial part of*Nitraria sibirica*Pall.

UDC 547.362

¹⁾ Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072, Minsk, ul. Surganova, 13, e-mail: loc@ifoch.bas-net.by; 2) Institute of the Chemistry of Novel Materials, National Academy of Sciences of Belarus, 220141, Minsk, Staroborisovskii trakt, 36, e-mail: dvas@ns.ichnm.ac.by; 3) Belorussian State Medical University, 220116, Minsk, pr. Dzerzhinskogo, 83, e-mail: rector@msmi.minsk.by. Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 94-95, January-February, 2006. Original article submitted September 23, 2004.

Compound	Tumor type					C I	Tumor type				
	Ι	П	Ш	IV	V	Compound	Ι	П	Ш	IV	V
1 a	10	>10	>10	>10	>10	10b	7	8	8	8	9
1b	10	>10	>10	>10	>10	11a	8	8	8	8	9
4 a	10	10	10	9	9	11b	7	8	9	9	9
4b	9	9	9	9	9	12a	8	8	9	9	9
5a	8	8	8	8	8	12b	7	8	8	9	8
5b	7	7	8	8	9	13 a	6	8	8	7	8
6a	7	8	9	8	8	13b	5	7	7	7	7
6b	7	8	8	8	7	14b	6	8	8	7	8
7a	7	8	8	7	7	15b	3	5	5	4	5
7b	6	7	8	8	8	16a	5	6	6	7	6
8 a	6	6	7	7	8	16b	4	5	5	5	5
8b	5	6	7	6	6	17a	2	3	3	4	3
9a	8	9	8	10	10	17b	1	2	1	1	1
9b	8	8	8	9	8	18b	0.8	1	2	1	1
10a	8	8	8	9	8	19b	0.3	0.4	1	0.5	0.8

TABLE 1. Antitumor Activity of **1a**, **b**, **4a**, and **b**-**19b** *in vitro*; Concentration of Compound Completely Suppressing Growth of Tumor Cells, mmol/L

The goal of the present work was to develop a preparative synthesis of new biologically active salts of *spiro*-derivatives of benzo[*f*]quinoline **1a** and **b** with several natural carboxylic acids **3** (ketopinic, 10-camphorsulfonic, 3-*exo*-isocamphanonesulfonic, abietic, benzoic, L-alanine, L-valine, L-leucine, L-isoleucine, nicotinic, succinic, 4,4'-biphenyldicarboxylic, and 2-hydroxy-4,4'-biphenyldicarboxylic). The optimal conditions were selected for preparing the previously unknown salts **4a** and **b-19b** by reacting **1a** and **b** with **3** in stoichiometric ratios 1:1 (salts **4a**, **b-13a**, **b**, **14b**, **16b**, and **18b**) or 2:1 (**15b**, **17a**, **b**, **19b**) in absolute MeOH. The reaction was carried out with boiling for 2-3 h. After removing MeOH over 4-5 h with heating at less than 40°C, the yields of **4a** and **b-19b** were 91-96%.

The products had the following melting points (°C) and compositions: **1a**, 196, $C_{20}H_{21}NO_2$; **1b**, 168, $C_{22}H_{25}NO_3$; **4a**, 91, $C_{30}H_{35}NO_5$; **4b**, 103, $C_{32}H_{39}NO_6$; **5a**, 125, $C_{30}H_{37}NSO_6$; **5b**, 87, $C_{32}H_{41}NSO_7$; **6a**, 163, $C_{30}H_{37}NSO_6$; **6b**, 133, $C_{32}H_{41}NSO_7$; **7a**, 141, $C_{40}H_{51}NO_4$; **7b**, 118, $C_{42}H_{55}NO_5$; **8a**, 107, $C_{27}H_{27}NO_4$; **8b**, 87, $C_{29}H_{31}NO_5$; **9a**, 194, $C_{23}H_{28}N_2O_4$; **9b**, 136, $C_{25}H_{32}N_2O_5$; **10a**, 192, $C_{25}H_{32}N_2O_4$; **10b**, 147, $C_{27}H_{36}N_2O_5$; **11a**, 188, $C_{26}H_{34}N_2O_4$; **11b**, 156, $C_{28}H_{38}N_2O_5$; **12a**, 197, $C_{26}H_{34}N_2O_4$; **12b**, 139, $C_{28}H_{38}N_2O_5$; **13a**, 184, $C_{26}H_{26}N_2O_4$; **13b**, 134, $C_{28}H_{30}N_2O_5$; **14b**, 127, $C_{26}H_{31}NO_7$; **15b**, 131, $C_{48}H_{56}N_2O_{10}$; **16a**, 198, $C_{34}H_{31}NO_6$; **16b**, 142, $C_{36}H_{35}NO_7$; **17a**, 182, $C_{54}H_{52}N_2O_8$; **17b**, 131, $C_{58}H_{60}N_2O_{10}$; **18b**, 193, $C_{36}H_{35}NO_8$; **19b**, 215, $C_{58}H_{60}N_2O_{11}$.

The salts **4a** and **b-19b** are colorless or weakly colored crystalline compounds that are soluble in acetone, C_{1-4} alcohols, and DMSO and poorly soluble in water. They are not hygroscopic. The purity of the products was 98±1%.

Compounds 1a, b, 4a, and b-19b are promising for studies of their antitumor properties [4].

The antitumor activity of the synthesized compounds (**1a**, **b**, **4a**, **b**-**19b**) was studied against five cancer types in various cell cultures: leukemia (I), melanoma (II), cancer of the colon (III), kidney (IV), and breast (V) (Table 1). After an initial computerized structure—activity analysis of the products, they were tested *in vitro*.

All studied compounds exhibited very good cytostatic activity toward leukemia (I). Changing the NH moiety to NCH₂OMe increased the activity toward all five cancer types. All studied salts (**4a** and **b-19b**) were more highly active than the starting compounds (**1a** and **b**). The aromatic carboxylic acids (**13a**, **b**, **16a**, **b-19b**) had the highest antitumor activity. The activity did not increase if salts of natural amino acids were used (**9a**, **b-12a**, **b**).

ACKNOWLEDGMENT

The work was supported financially by the Republic of Belorussia Basic Research Foundation (grant X 03-079).

REFERENCES

- A. P. Kadutski, N. G. Kozlov, and A. V. Tkachev, in: Book of Abstracts of the 2nd International Conference on Natural Products and Physiologically Active Substances (ICNPAS-2004) and 3rd EuroAsian Heterocyclic Meeting "Heterocycles in Organic and Combinatorial Chemistry" (EAHM-2004), Novosibirsk, Russia, Sept. 12-17, 2004, p. 157.
- 2. D. Tanner, H. H. Ming, and M. Bergdahl, *Tetrahedron Lett.*, **29**, No. 49, 6493 (1988).
- 3. Z. Osmanov, A. A. Ibragimov, and S. Yu. Yunusov, *Khim. Prir. Soedin.*, 75, 126, 400 (1982).
- 4. N. N. Blokhin and N. I. Perevodchikova, *Chemotherapy of Tumorous Diseases* [in Russian], Meditsina, Moscow (1984), p. 15.